• Irasidus
    #20
    Itt írja:

    "Chain reactions do not occur in RTGs, so heat is produced at an unchangeable, though steadily decreasing rate that depends only on the amount of fuel isotope and its half-life. An accidental power excursion is impossible. However, if a launch or re-entry accident occurs and the fuel is dispersed, the combined power output of the now radionuclides set free does not drop. In an RTG, heat generation cannot be varied with demand or shut off when not needed. Therefore, auxiliary power supplies (such as rechargeable batteries) may be needed to meet peak demand, and adequate cooling must be provided at all times including the pre-launch and early flight phases of a space mission."

    Illetve, ha végigolvastad volna, és nem csak a neked tetsző részt linkeled be:

    "One example is the RTG used by the Voyager probes—In the year 2000, 23 years after production, the radioactive material inside the RTG had decreased in power by 16.6%, i.e. providing 83.4% of its initial output; starting with a capacity of 470 W, after this length of time it would have a capacity of only 392 W. A related (and unexpected) loss of power in the Voyager RTGs is the degrading properties of the bi-metallic thermocouples used to convert thermal energy into electrical energy, the RTGs were working at about 67% of their total original capacity instead of the expected 83.4%. By the beginning of 2001, the power generated by the Voyager RTGs had dropped to 315 W for Voyager 1 and to 319 W for Voyager 2"


    A wiki más szót: csökkenést, kimaradás ír, én meg impulzusszerűt. Lényegtelen.
    Utoljára szerkesztette: Irasidus, 2015.07.27. 15:28:31