Wheeler–Feynman elnyelési elmélet. Igaz vagy hamis?
  • rahan44
    #106


    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    #include <X11/Xlib.h>


    Display *dpy;
    Window win;
    GC gc;
    double radian=(180.0/M_PI);


    void pixel(int x,int y,int color)
    {
    XSetForeground(dpy,gc,color);
    XDrawPoint(dpy, win, gc, x,y);
    }
    void line(int x1,int y1,int x2,int y2,int color)
    {
    XSetForeground(dpy,gc,color);
    XDrawLine(dpy, win, gc, x1,y1,x2,y2);
    }
    double sqr(double n) // x^2
    {
    return n*n;
    }
    double doublerand() //random szam 0.0-tol 1.0-ig
    {
    return (double)(rand()%10000)/10000.0;
    }



    struct vec2d
    {
    double x,y;

    vec2d() {x=0;y=0;}
    };
    void add_amp(vec2d *v,double phase,double ax,double ay)
    {
    v->x += sin(phase)*ax;
    v->y += cos(phase)*ay;
    };
    void add_polarizer(vec2d *v,double phase)
    {
    v->x *= sin(phase);
    v->y *= cos(phase);
    };
    double dot(vec2d *v1,vec2d *v2)
    {
    return v1->x*v2->x + v1->y*v2->y;
    }
    void add_quarterwaveplate(vec2d *v,double phase,double dist,double qwp,double ax,double ay,double dphase)
    {
    vec2d axis_fast,axis_slow,input_wave;

    add_amp(&axis_fast,qwp,1.0,1.0);
    add_amp(&axis_slow,qwp+90.0/radian,1.0,1.0);
    add_amp(&input_wave,phase,1.0,1.0);

    double amp_fast=dot(&axis_fast,&input_wave);
    double amp_slow=dot(&axis_slow,&input_wave);

    amp_fast=cos(dist+dphase)*amp_fast;
    amp_slow=sin(dist+dphase)*amp_slow;//-+90 phase shift

    v->x += (axis_fast.x*amp_fast + axis_slow.x*amp_slow)*ax;
    v->y += (axis_fast.y*amp_fast + axis_slow.y*amp_slow)*ay;
    };
    double probalbility(vec2d *v)
    {
    return (sqr(v->x) + sqr(v->y));
    }


    int main()
    {
    dpy = XOpenDisplay(0);
    win = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), 0,0, 800, 550, 0,0,0);

    XSelectInput(dpy, win, StructureNotifyMask);
    XMapWindow(dpy, win);
    gc = XCreateGC(dpy, win, 0, 0);

    for(;;) { XEvent e; XNextEvent(dpy, &e); if (e.type == MapNotify) break; }



    for(int x=0;x<400;x++)
    {
    pixel(x,500,0x008800);
    pixel(x,300,0x008800);
    pixel(x,100,0x008800);
    }



    for(int ds_x=0;ds_x<400;ds_x++)//Ds position -+4mm
    {
    int photon_counter=0;
    int maxphoton=400;
    int maxwide=10;

    int qwplate_on=1;
    int eraser_on=1;
    double eraser_alpha=22.5/radian;
    // double eraser_alpha=(-22.5)/radian;

    // if(eraser_on) maxphoton*=4;//lathatosag



    for(int p=0;p<maxphoton;p++)// max number of photon
    {
    double dphase=M_PI*2*doublerand();
    #if 1
    double photon_pol_a=M_PI*2*doublerand();
    double photon_pol_b=photon_pol_a+M_PI/2;
    #else
    double photon_pol_a=0; //polarized lightsource
    if(doublerand()>0.5) photon_pol_a=M_PI/2;
    double photon_pol_b=photon_pol_a+M_PI/2;
    if(doublerand()>0.5) photon_pol_b=photon_pol_a-M_PI/2;
    #endif


    double ds_distance=1250.0-420.0;//mm 125-42 cm
    double dp_distance=980.0; //98 cm
    double wavelength=702.2e-6;//mm e-9m
    double k=2.0*M_PI/wavelength;
    vec2d amp_dp,amp_ds;

    if(eraser_on)
    {
    if(doublerand()>0.5)
    {
    photon_pol_a=eraser_alpha;//backwark causality
    photon_pol_b=eraser_alpha+90.0/radian;
    }
    else
    {
    photon_pol_a=eraser_alpha+90.0/radian;
    photon_pol_b=eraser_alpha;
    }
    }


    double hole_dist=0.2;//0.2
    double hole_wide=0.2;//200 micrometer wide
    double ds_pos=4.0*(double)(ds_x-200)/200.0;//+-4mm Ds position
    int side=rand()%2;

    for(int w=0;w<maxwide;w++)//slit wide
    {
    double hole1x=hole_dist/2.0 + hole_wide*(double)w/maxwide;//hole
    double hole2x=-hole_dist/2.0 - hole_wide*(double)w/maxwide;
    double dist1=sqrt(sqr(ds_pos - hole1x) + sqr(ds_distance));
    double dist2=sqrt(sqr(ds_pos - hole2x) + sqr(ds_distance));


    if(qwplate_on)
    {
    if(side==0)
    {
    add_amp(&amp_dp,photon_pol_a ,0.5,0.5);
    add_amp(&amp_dp,photon_pol_a ,0.5,0.5);

    add_quarterwaveplate(&amp_ds,photon_pol_b , dist1*k,-45.0/radian,0.5, 0.5,dphase);
    add_quarterwaveplate(&amp_ds,photon_pol_b , dist2*k, 45.0/radian,0.5, 0.5,dphase);
    }
    else
    {
    add_amp(&amp_dp,photon_pol_b ,0.5,0.5);
    add_amp(&amp_dp,photon_pol_b ,0.5,0.5);

    add_quarterwaveplate(&amp_ds,photon_pol_a , dist1*k,-45.0/radian,0.5, 0.5,dphase);
    add_quarterwaveplate(&amp_ds,photon_pol_a , dist2*k, 45.0/radian,0.5, 0.5,dphase);
    }
    }
    else
    {
    add_amp(&amp_dp,photon_pol_a ,0.5,0.5);
    add_amp(&amp_dp,photon_pol_a ,0.5,0.5);
    add_amp(&amp_ds,photon_pol_b +dist1*k ,0.5,0.5);
    add_amp(&amp_ds,photon_pol_b +dist2*k ,0.5,0.5);
    }
    }
    if(eraser_on) add_polarizer(&amp_dp,eraser_alpha);// polarizer before Dp

    amp_dp.x/=maxwide;//normalized
    amp_dp.y/=maxwide;
    amp_ds.x/=maxwide;
    amp_ds.y/=maxwide;


    if((probalbility(&amp_dp))>doublerand())
    if((probalbility(&amp_ds))>doublerand())
    photon_counter+=1;
    }
    pixel(ds_x,500-photon_counter,0xffff00);
    }

    /*
    double dist1=0.0;
    for(int p=0;p<1000;p++)//quarterwaveplate
    {
    vec2d amp_dp,amp_ds;
    add_quarterwaveplate(&amp_ds,0.0/radian , dist1*M_PI/100.0,45.0/radian,0.5, 0.5);

    line(200,200,200+200.0*amp_ds.x,200+200.0*amp_ds.y,0x00ff00);
    dist1+=5.0;

    XFlush(dpy);
    getchar();
    }
    */
    XFlush(dpy);
    getchar();

    return 0;
    }