• halgatyó
    #66
    Bocs, hogy ennyire megkésve válaszolok.

    A fúzió gyakorlati megvalósításának -- pontosabban a kísérleteknek -- két útja van. Az egyik a hígplazmás eljárás, amely egy igen erős mágneses térrel körbevett, ma már tórusz alakú térben próbálja tartani a plazmát annyi ideig, hogy a fúzió során több energia szabaduljon fel mint amennyi a felfűtés egyszeri és a hőmérsékleti sugárzás folyamatosan jelentkező vesztesége. (ez persze rettenetesen leegyszerűsített modell)

    Ez a hígplazmás út kezdetben igen jó ötletnek tűnt, ám az a fránya plazma rettentő okosan képes a mágneses térből kimászni, emiatt -- és néhány más nehézség miatt is -- máig sincs effektíve plussz energiát termelő reaktorunk.

    A jelenlegi fúziós kisérletekben a deutérium-tricium gázkeverék sűrűsége igen kicsi, a kisülés megindulása előtt kisebb mint az a vákum, amit pl. egy rotációs légszivattyú képes szívni. A kisülés és külső a mágneses tér aztán ezt összébb préseli az emelkedő hőmérsékleten -- tudomásom szerint -- akár száz bar nagyságrendig is felmehet a nyomás. Persze a gazdaságos fúziós tartomány nem feltétlenül ez, csakhát végig kell mérni..

    Adódik az ötlet: ha a plazma ilyen nehezen tartható össze hosszabb ideig, akkor próbáljuk meg csak rövid ideig begyújtani, amíg a saját tehetetlensége összetartja. Első hallásra nem tűnne jó ötletnek, de amikor felmerült, akkor már előttünk volt a TAPASZTALAT: a módszer nagyobb méretben "kiválóan" működik. Ez a hidrogénbomba.

    Kicsiben nyilván nem atombombát kell használni a begyújtásra. Keresni kell valamilyen nagy -- időben és térben egyaránt -- energiasűrűséget biztosító módszert. A mai technikai rendszerünkben a lézer tűnt erre a legalkalmasabbnak.
    A lézer előnye, hogy jól kidolgozott (optikai) eljárásokkal kezelhető, időben igen rövid, és ma már meglehetősen nagy energiát leadni képes.
    Az ilyen több millió megawattoktól nem kell hasraesni, ez a nagy teljesítmény azért jön ki, mert a villanás energiáját nagyon rövid időtartammal osztjuk.
    Például: ha 1000 Joule egy villanás energiája (ez ma már nem extrém) és ez a villanás 10^-9 másodperc (1 milliárdod másodperc) alatt zajlik le, akkor a teljesítmény 1 TW (Tera-Watt) vagyis 1000 GW. Ez kb. 200-szorosa Magyarország teljes erőművi teljesítményének, csakhát az ilyen összehasonlítás erősen bulvárszagú.

    Az eljárás a következőképpen történik:
    Légüres (majdnem) térbe bepottyintanak egy parányi, szilárd halmazállapotú (fagyasztott) deutérium-tricium gömböcskét, és amikor a kamrának egy megfelelő pontjára ér (ahová a lézernyalábok fókuszálva vannak) akkor jönnek a nyalábok.

    A lézernek van még egy speciális tulajdonsága: mivel nagyon párhuzamos, igen jól fókuszálható. A parányi gömbre fókuszált lézersugár pedig elkezdi hevíteni a gömböcske külső rétegét. Ahogy a nagyítóval égettük a papírt a napon gyerekkorunkban. (Meg a körmünket is kipróbáltuk, igen kínos:-))
    A hirtelen nagyon felmelegedett anyag hatalmas erővel (nyomással) tágulni kezd. Egy gömbhéj alakú anyag, amely a nyomást kifelé és befelé (a gömb középpontja felé) egyformán kifejti. Kifelé akadálytalanul képes tágulni, befelé nyilván nem, mert ott van a fagyasztott gömböcske többi része. Egyet nyom rajta befelé, minden irányból, mint egy körbe-kalapácsütés.
    A lerobbanó külső réteg alatt ott a következő réteg, a lézersugár már ezt melegíti. Majd az utána következőt, folyamatosan párolog le a külső réteg, közben a kicsi gömb középpontjánam a nyomás és a hőmérséklet emelkedik.

    Ez az emelkedés hétköznapi szemmel nézve igen nagy. A fagyasztott hidrogén gömböcske sűrűsége elérheti a víz sűrűségének a százszorosát is. Az impulzus időtartama nagyságrendileg 1 milliárdod másodperc, de fontos az IMPULZUS ALAKJA is. (a teljesítmény időbeli lefutása nem négyszögimpulzus formájú, inkább egy asszimmetrikus haranggörbére hasonlít amennyire én értesültem.)

    Az eljárás nehézségei akkor kezdődnek, amikor a pici gömböcske már eléggé sűrű és forró. Ekkor ugyanis a lézer már egyre csökkenő hatásfokkal fogja fűteni a plazmát, egyre inkább visszaverődik a gömböcskéről. A fény-nyomás persze ekkor is működik, és az erősen koncentrált lézerfény nyomása jóval meghaladhatja a hétköznapokban megszokott értékeket, de ez akkor is hatásfok csökkenés.

    Van még pár probléma. Pl. igen rövid idő áll rendelkezésre a fúzióra. A fúziós reakció nem minden egyes ütközéskor megy végbe, hanem csak viszonylag ritkán, sok ütközés közül, bizonyos valószínűséggel. Emiatt igen nagy hőmérséklet és sűrűség kell, lényegesen nagyobb, mint a híg plazmás eljárásban.

    A parányi, fagyasztott hidrogén gömböt azért vonják be valami nagyobb atomsúlyú és sűrűségű szilárd anyaggal, hogy a felfűtéskor kialakuló lökéshullám jobban koncentrálódjon a hidrogén gömbön. (A lökéshullám bizonyos helyzetekben produkál effektusokat, pl. képzeld el, amint a tengerben terjedő lökéshullám a partra ér)
    Ekkor nem a lézer közvetlenül fűti fel a hidrogén gömböt, hanem a felerősödő lökéshullám. (Iongáz fűtés is.) Cserébe visszont jóval nagyobb tömeget kell felmelegíteni, ami nagyobb lézert igényel (energiamérleget rontja).

    Lényeges még: jelenleg kisérletek folynak. A jelenségek lefolyását a kezdeti feltételek változtatásával végigmérik. Ebben a stádiumban fontosabbak ezek a mérések, mint a pozitív energiamérleg, ezért nem probléma a hidrogén gömböcskét körülvevő nagyobb tönegű idegen anyag jelenléte.
    Később, amikor tényleg energiát fog termelni a gép, akkor nem lesz borsónyi rézgolyó a néhány mikrogrammos hidrogén körül.

    Sok még a megoldatlan probléma: a tricium GAZDASÁGOS előállítása, a keletkezett energia kihozatala, később elképzelhető hogy nem triciumot fognak használni, akkor viszont nagyobb sűrűség és hőmérséklet kell, esetleg nagyobb méret is.