• bvalek2
    #34
    Óriási félreértés van a cikkben, lehet hogy az eredeti cikkben is. A Poincaré csoportot és a Poincaré sejtést keverik össze. Talán segít, kicsit utánanéztem a dolognak.

    A Pointcaré sejtés, for dummies ;)

    - Bevezető

    Képzeljétek el a kört, és a gömböt. Ugye van köztük hasonlóság? A kört tulajdonképpen egy kétdimenziós gömb, amit egy egydimenziós görbe vonal határol. Akkor pl. a földgömb háromdimenziós gömb, amit egy kétdimenziós felület határol. És ha elindulok az egyik irányba rajtuk, akkor a kiindulási helyemre visszaérkezek a másik irányból. Pl. amikor Fa Nándor tett egy tiszteletkört a föld körül a vitorláshajójával, keletnek indult, és nyugat felől érkezett haza. Ráadásul a Földnek nincsen határa, de mégis véges a felülete.

    Lehet folytatni a sort, a négydimenziós gömb felülete háromdimenziós. Ezt a szupergömböt nem tudjuk elképzelni, de ez nem is baj, a számolni rajta is lehet. A felülete még elképzelhető, csak azt kell megemészteni, hogy ebben a háromdimenziós felületben ha elindulok az egyik irányba, akkor egy idő után a másik irányból fogok visszaérkezni a kiindulási helyemre. Tehát, ha a világűr ilyen alakú lenne, akkor mondjuk elindulnánk fölfelé, és sok űrhajózás után alulról érkeznénk vissza. Ráadásul ebben az esetben a világűr térfogata véges lenne, ahogy a Föld felszíne is véges, annak ellenére hogy nem lenne fal a világűrben, amiben bele lehetne ütközni. (mondjuk fel lehet tölteni vízzel, és egy idő után nem fér bele több. Egy végtelen univezumot nem lehetne teletölteni, mindig férne bele még több, még több, még több...)

    Ez szép és jó, de vannak fura alakzatok is, mint a tórusz, ősmagyar nyelven fánk :) Erre is igaz, hogy ha egy hangya elindul rajta, akkor könnyen visszajuthat a kiindulási helyére. Ráadásul a felülete is véges, és nincsen határa sem. De mégis van egy bibi. Ha a földgömbön körbe-körbe sétálok, akkor csinálhatok olyat, hogy egyre kisebb sugarú köröket teszek, egészen addig, amíg meg nem érkezem a kör közepére (kör közepén állok... Edda? ;)) De gondoljatok bele, a fánkon ezt nem mindíg lehet megtenni. Mert ha a fánk közepén lévő lyuk körül sétálok, akkor nem tudok egyre kisebb sugarú köröket róni, szegény hangya leesne a fánkról.

    A fánknak is vannak többdimenziós rokonai, mint a gömbnek, és rájuk is igaz, hogy nem lehet bennük minden tetszőleges kört összehúzni egy pontba. A gömbön lehet, és ez a lényeg az egészben.

    - Tehát a Poincaré-sejtés:

    Ha van egy háromdimenziós terünk, aminek nincs határa, véges a térfogata, és bármely kört össze lehet húzni benne egy ponttá, akkor az a tér BIZTOS egy négydimenziós szupergömb felszíne. Pont olyané, amiről fentebb írtam.

    Egészen mostanáig csak sejtettük hogy ez a három feltétel elég ahhoz hogy az említett háromdimenziós felület egy négydimenziós gömb felülete legyen, de hála a Perelman nevű orosz matematikusnak, most már biztosak lehetünk benne. Kevesebb, és több dimenziós esetén már volt rá bizonyíték, de a négydimenziós gömb esetén most először, 2006-ban, 100 év várakozás után.

    Perelman megoldása pedig a következő:

    - Bevezető:

    Egy felületet úgy tudunk megérteni, hogy ha bevezetünk rajta egy koordinátarendszert. Pl. A Földön vannak földrajzi koordináták. Matekórán derékszögű koordináták. stb. A szupergömböt is be lehet hálózni koordinátavonalakkal. Az egész geometriában az a trükk, hogy a szép alakzatokkal, mint pl. egy váza, lehet számolni is. A koordináták arra jók, hogy számszerűen meg tudjuk mondani, hogy hol van a felület egy pontja, milyen messze van egy másik ponttól, merre kell elindulnom, ha A-ból B-be akarok eljutni, stb.

    Hogy ezt pontosan hogyan kell, azt most nem írom le, sokáig tartana, de a lényeg az hogy számolni kell, és kész. Kell a négy alapművelet: +-*/, hatványozás, gyökvonás, logaritmus, és kell tudni deriválni, meg integrálni. Ezeket minden matekos szakos középiskolás tudja. Egyetemre pedig ez kell legalább a felvételihez. Persze csak ha nem kamu bölcsész szakra jelentkeztél ;).

    Fentebb írtam, hogy csinálhatunk olyat, körbe-körbe járunk, egyre kisebb sugarú körökön, amíg meg nem érkezünk a kör közepére (és ezt pl. nem lehet megcsinálni egy fánkon, ha lyuk van középen). Olyan is csinálhatok, hogy megvárom, amíg a fánk ELFONNYAD. Összetöpped, degenerálódik, kiszárad, stb. :) Mi lesz a fánkból, ha teljesen összemegy? Egy karika. Már nem is lesz benne tészta, nem is lesz felülete, csak egy karika marad belőle. Ha a gömböt fonnyasztom össze, akkor egy pont lesz belőle.

    Nemrég egy Hamilton nevű matematikus jött rá, hogy van megoldás a problémára, meg kell fonnyasztani a szupergömböt, és ha marad benne lyuk, mint a fánk után, akkor nem is gömb volt, hapedig összetöpped teljesen, akkor gömb volt (leegyszerűsítve, ez a lényeg). Hamilton módszere azonban nem alkalmazható bonyolult alakzatok esetén, mert nagyon rondán töppednek össze, göcsörtök (szingularitások) keletkeznek bennük.

    - Perelman megoldása:

    Fel kell darabolni az alakzatokat, kisebb, kezelhető részekre, amiket ha degenerálunk, akkor nem lesznek bennük szimgularitások, és így szépen véghez lehet vinni a fonnyasztást. Aztán ha kiderül, hogy maradnak lyukak, akkor nem gömb volt. Ha nem maradnak lyukak, akkor BIZTOS gömb volt.

    Perelman leírt egy általános "fonnyasztó" módszert, ami minden háromdimenziós térre alkalmazható, és általános esetben bizonyította be, hogy csak a négydimenziós gömb háromdimenziós felülete véges térfogatú, nincsen határa, és bármely kört össze lehet húzni benne egy ponttá.

    THE END :)

    forrásaim:
    Poincaré sejtés
    [URL=http://en.wikipedia.org/wiki/Ricci_flow]"Fonnyasztás" módszere :)[/URL]